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A basic formula of differential thermal analysis is evolved for the case when the heat
transfer coefficient between the specimen cell and the reference cell is not zero. The more
general formula obtained differs from the classical formula by including the parameters of
the reference cell and the heat transfer coefficient between the cells. It indicates that utiliza-
tion of the classical formula is not correct if heat exchange occurs between the cells. To
utilize the generalized formula, additional measurements of the temperature changes of the
reference material are required. However, if the time constants of the two cells are identical,
the formula can be changed to assume the form of the classical formula for DTA if a correc-
tion factor is introduced which takes into account the effect of heat exchange between the
cells.

The deficiency of the classical formula of DTA first introduced in 1957 by
Borchardt and Daniels [1] is that its utilization is restricted insofar as it postulates the
non-occurrence of heat exchange between the specimen and the reference sample.
However, cases occur in DTA practice in which such heat exchange does take place.
in the various instruments for DTA described in the literature [1—4] the absence of
heat exchange between the specimen cell and the reference cell is assumed. However,
the correctness of this assumption is unfounded. No theoretical investigation of the
problem is to be found in the literature.

To increase the stability of the baseline of the instrument, it is favourable to posi-
tion the holders of the specimen cell and of the reference cell as close as possible to
one another within a small volume of the furnace capacity where the probability of
a homogeneous temperature distribution is higher. However, as the holders approach,
the heat transfer coefficient between them increases to a value at which the tempera-
ture change of the specimen by virtue of the thermal reaction induces a corresponding
change in the temperature of the reference material. If, for instance, the reaction is
endothermic, the temperature of the specimen wiil lag behind the temperature of the
reference material during the reaction, and heat will be transferred from the latter to
the specimen. As a result, the reference material will cool down slightly and the
specimen will warm up. The negative temperature difference in the specimen (its
absolute value) will decrease, and an additional negative temperature will be produced
in the reference material, depending on its heat capacity and on the heat transfer
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Fig. 1 Diagrammatical representation of the DTA sensor. C — heat capacity of the specimen with
hoider, C; — heat capacity of the reference material with holder, Ky, K5 — heat transfer
coefficients of the specimen cell and the reference cell, resp., K3 — coefficient of heat
transfer between the specimen cell and the reference cell, 7y, T, T3 — temperatures of
the specimen, the reference material and the heating block, resp.

coefficient. Analogous considerations hold for exothermic reactions. It is evident that
the differential signal recorded when there is a thermal connection between the cells
may differ essentially from the differential signal recorded in the absence of such a
connection.

It is of interest to examine the above phenomenon quantitatively and to develop
a method allowing an experimental check on whether a thermal connection exists
between the cells or not. In the following, the generatized formula of DTA will be
derived for a weak thermal connection. The symbols are the same as in our previous
paper (cf. also caption to Fig. 1).

Let us write the equation of heat balance for the cells with a thermal connection
between them. For the specimen cell before the reaction we have:

C1dT1 =K1(T3 — T1}dt + K3(To — T4) dt (1)
For the reference cell before the reaction:
CodTy = Ko(T3 — T} dt + K3(Tq — Tp) dt (2)
For the specimen cell during the reaction:
C1d{T + ATq) +dAH =
=Ki(T3—T1 —AT1)dt + K3(Ta + AT - Ty — AT) dt (3)
For the reference ceil during the reaction:
Cod(To + ATH) =
=Ko(Tag— Ty — AT3)dt + K3(T{ + ATy ~ To — AT} dt (4)

where AT is the incremental temperature of the specimen, and AT the incremental

J. Thermal Anal. 27, 1983



SHISHKIN: THEORY OF DTA 303

temperature of the reference material. For endothermic reactions AH >0, AT} <0
and AT, <0; for exothermic reactions AH <0, ATy > 0 and AT, > 0.

Let us assume that Ky = K2 = K; this condition is satisfied with cells having identi-
cal thermal barrier resistances. Let the heating programme of the block be (Fig. 1):

Ta=To+ ot (5)
When a linear temperature rise is established at AH = 0:
T1=Tg+ ¢t — ¢74 (6)
Ty=Tg+ ¢t— ¢73 {7}

if the small terms K3(7y — T3) dt in Egs (1) and (2) are neglected. Hence the theory
can be utilized if K3 € K and Cq = C9, since the term K'3(T1 — T3) is negligibly small
only under these conditions. This case will be attained in practice on the correct
choice of the parameters of the reference cell.

It follows from Egs (5), (6) and (7) that

T3—— T1 =‘-‘¢T1
To-Ty=¢lry —72)
T3~ Ty =972

Substituting these expressions into Egs {3} and {4} and carrying out the necessary
transformations, we obtain

_%z AT, + 74 -di? +—/;§ (AT; — AT) — K—;di (11— 19) (8)
A5+Q9ib“%ﬁmq-mw+%?wr4ﬂ=o (9)
Subtraction of Eq. (9) from Eq. (8) yields
_9AH
Kdt
= (1 + ?%i) (ATq — AT,) + 74 dﬁ;? -T2 di? - 2’;34) {ry —72) (10)
while adding Eqs (8) and (9) results in
_%zAT1+AT2+T1§%?+ng% (n

In the case of identical time constants for the specimen cell and the reference cell,
Eqgs (10) and (11) become simpler:
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dAH d{AT, — AT5)

— =1 +——) (ATq = ATg) +7—— (10a)
_dAH d{AT] + AT,)
- = AT T ATy (11a)

In the usual position of the differential thermocouple (hot junction of one branch
in the specimen, and hot junction of the other branch in the reference material) the
signal recorded is equal to the difference of the incremental temperatures of the
specimen and the reference material, if counted from the dynamic baseline of the
instrument. To measure these temperatures separately, one branch of the differential
thermocouple should be located on the external surface of the heat barrier of the
corresponding cell (on the wall of the block); then, by locating the other branch in
the specimen, we can record AT, and the locating it in the reference material, we
record AT5. Thus, of the above equations, only Eq. (10a) can be utilized, since with
the traditional positioning of the differential thermocouple we cannot determine AT
and AT separately, but only their difference.

A comparison of Eq. {11a) with the common equation of DTA

— TSI = AT, T

Kdt dt (12)

demonstrates that the sum of the incremental temperatures of the specimen and the
reference material, for the case when the time constants of the cells are identical,
is equal to the incremental temperature of the specimen in the absence of a thermal
connection between the cells; i.e. at 79 =79, the incremental temperature of the
reference material is equal in value to the decrease in the incremental temperature
of the specimen.

Equations (10) and (10a) demonstrate that if a thermal connection exists between
the cells, the signal recorded decreases due to the decrease of the incremental tempera-
ture form ATp to AT, and also due to the incremental temperature of the reference
material being subtracted from the incremental temperature of the specimen in the

differential thermocouple circuit. Since the term is defined by the reaction in

dt
question and does not depend on the méthod of measurement, the decrease in the

signal registered must, by some means, be compensated in the calculation. Such a

2K 3
compensation is effected by the factor (1 +T] before the term (AT — AT»).

With increasing K3 values, the difference {ATy — AT>;) decreases but the value of the

2K
factor (1 +—K—3-) increases, and thereby compensation is accomplished. The above

is valid for not too high values of K3, this being the condition initially pointed out.

Equations (10), (10a), {11) and (11aj are the general equations of differential
thermal analysis. The classical Eq. (12) follows from them as a particular case in
which K3 =0and AT, =0
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From the above analysis it follows that if a thermal connection exists between
the specimen cell and the reference cell, calculations using the classical formula of
DTA, Eqg. (12), will be incorrect. Calculations with the above-derived general equa-
tions, however, require additional measurements of the incremental temperature of
the reference material, i.e. the process will become more intricate. The general formula
includes the parameters of the reference cell, the heating rate and the coefficient of
the thermal connection between the cells, all these being absent from Eq. (12). The
situation becomes somewhat simpler if the time constants of the specimen cell and
the reference cell are equal, since Eq. (10a) can then be used, this being similar in form
to the usual equation of DTA. Howevér, an additional constant, the coefficient of heat
transfer between the cells is included, and accordingly its use will be cumbersome.

In the general case, it is impossible to establish from the form of the thermoanalyti-
cal curve whether or not, in the actual instrument, a thermal connection exists
between the specimen and the reference material. To answer this question the thermo-
couple of the specimen must be placed on the wall of the heating block and the
thermoanalytical curve of the reference material recorded. If a peak appears in the
curve in the interval of the thermal transformation of the specimen, this finding
will indicate the existence of a thermal connection between the cells.

Another technique is also suitable to find out whether such a connection exists.
This technique allows determination of the optimum distance between the sample
holders and, if necessary, the value of the coefficient of thermal connection K3. For
this purpose, let us transform the general equation of DTA into the integral form.
Let us integrate Eq. (10) from the moment when the differential curve deviates from
the baseline to the moment when it returns to the baseline:

5]
AH = (K + 2K3) | (AT — AT) dt + 2K3(r9 — 1) (to — tq) (13)
t
1 0
where AH is the total heat of the thermal transformation, and A = f (AT, — AT5)dt
1 .

is the area under the peak in the DTA curve, reduced in comparison to the area of the
peak in the absence of a thermal connection between the cells. Let us move the
specimen holder and the reference material holder to a distance at which the thermal
connection between them is negligibly small (this will correspond to the maximum
area not changing further). Such a shift of the holders can readily be performed in
an instrument such as that represented diagrammatically in Fig. 1; the motion of the
holders along the axis of the furnace will not change the distance between the crucible
walls and the block, and consequently will have little effect on the heat transfer co-
efficient K. The DTA curve with the maximum area A under the peak is recorded
and the value K is found by means of the formula

AH=K"-A (14)

which is the integral form of Eq. (12). The value AH in Eq. (14) must, of course,
be known, so that only a material whose heat of transformation is known is suitable.
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Using Eq. (13), we can then calculate the coefficient of the thermal connection K'3:

KA —-A,)
K3= —
Aq +2ATglty — t4)

(15)

where ATg = ¢(19 — 71) is the initial displacement of the baseline from the zero line
on recording of the DTA curve with a peak area of value A4.

The coefficient K3 can also be found by varying the heat capacity of the specimen
of the reference material. This causes the recorded values of ATz and A4 to change,
while the unknowns K and K3 remain unchanged. The latter can then be found by
solving the system of two equations with two unknowns.
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Zusammenfassung — Fiir den Fall, dass der Ubertragungskoeffizient zwischen der Proben- und der
Referenzzelle nicht Zero ist, wurde eine Grundformel der Differentialthermoanalyse entwickelt.
Die entstandene Formel, die vieimehr aligemein ist, weicht von der klassischen dadurch ab, dass
sie auch die Parameter der Referenzzelle, und den Warmeiibertragungskoeffizient zwischen den
Zellen enthélt. Sie deutet darauf hin, dass die Anwendung der klassischen Formel in dem Fall
nicht einwandfrei ist, wenn ein Warmeaustausch zwischen den Zellen zustande kommt. Zur An-
wendung der verallgemeinerten Formel sind weitere Messungen des Temperaturaustausches vom
Referenzmaterial erforderlich. Sind aber die Zeitkonstanten der zwei Zellen identisch, kann die
Forme! so gedndert werden, dass sie die Gestalt der klassischen DTA-Formel annimt, wenn ein,
mit der Wirkung des Warmeaustausches zwischen den Zellen rechnender Korrektionsfaktor ein-
gefiihrt wird.

Pesiome — Mpusoaurca BeIBOA OCHOBHOMN (hOpMYnibl AnddepeHunanbHOro TepMUYEcKoro aHanusa
ANA cnyyan, Korpa KosdohuuueHT Tennonepeaauu mexay Aveitkamu 06pasia n aTanoHa He paBeH
Hynw. (onyuetHan Gonee o6wan GopMyna OTANYAETCA OT KNACCUMECKON TeM, 4TO B Hee BXOART
napaMeTpbl ITANOHHOW AYeKU U KOIDDUUMEHT Tennonepeaauy MeXkay AYeliKamu, 4TO yKasbi-
BaeT Ha HENPaBOMEPHOCTb MCNONbL30BAHUA KnaccuyecKol opmynbl NpU Hanuuuu Tennoobmexa
Mexay aveiikamu. Ucnonb3osaHue nonyueHHON o6Gwei dopmynsl TpebyeT AONONHUTENbHbLIX
M3MepeHUil TeMNEPaTypHbIX N3MEHEHWI aTtanoHa. OAHaKOo, NPU PaBeHCTBE NOCTORHHBIX BPEMEeHU
ABYX AYEEK CTaHOBMUTCA BO3MOXXHbIM NpumeHeHue obwelt bopmynsl, npuHumalouleir hopmy
Knaccuueckoit popmynsi ATA, Npu ycnosuu BBEAGHUA B Hee fIONPAaBOYHOr0 MHOXUTENA, YYUTbI-
Balowero sBnuAHue KoadduuneHTa Tennonepenadu MexxAy AYeliKamu.
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